Complete the following reactions— (i) Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → (ii) 2CrO₄²⁻ + 2H⁺ → (iii) 2MnO₄⁻ + 5C₂O₄²⁻ + 16H⁺ →
The magnetic moment of few transition metal ions are given below:
Consider the standard electrode potential values (M²⁺/M) of the elements of the first transition series.
(i) Complete the following equations : (a) 2MnO₄⁻ + 5SO₃²⁻ + 6H⁺ → (b) Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → (ii) Based on the data, arrange Fe²⁺, Mn²⁺ and Cr²⁺ in the increasing order of stability of +2 oxidation state. E°(Cr³⁺/Cr²⁺) = -0.4 V E°(Mn³⁺/Mn²⁺) = +1.5 V E°(Fe³⁺/Fe²⁺) = + 0.8 V
Write the preparation of following : (i) KMnO₄ from K₂MnO₄ (ii) Na₂CrO₄ from FeCr₂O₄ (iii) Cr₂O₇²⁻ from CrO₄²⁻
Account for the following : (i) CuCl₂ is more stable than Cu₂Cl₂. (ii) Atomic radii of 4d and 5d series elements are nearly same. (iii) Hydrochloric acid is not used in permanganate titration.
(i) Give reasons for the following : (a) Compounds of transition elements are generally coloured. (b) MnO is basic while Mn₂O₇ is acidic. (ii) Calculate the magnetic moment of a divalent ion in aqueous medium if its atomic number is 26.
Give reasons : (i) Mn shows the highest oxidation state of +7 with oxygen but with fluorine it shows the highest oxidation state of +4. (ii) Transition metals show variable oxidation states. (iii) Actinoids show irregularities in their electronic configurations.
(i) Account for the following : (a) Cu⁺ is unstable in an aqueous solution. (b) Transition metals form complex compounds. (ii) Complete the following equation : CrO₂₇²⁻ + 8H⁺ + 3NO₂⁻ →
Scroll to Top